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Introduction: Clinical trials are the preferred method in the evalu-
ation of medical interventions. However, missing data causes loss of
power and may introduce biases, potentially leading to researchers
over- or underestimating intervention effects. This is a particular issue
in studies where data are correlated, such as in longitudinal cluster-
randomised controlled trials (LCRCTs). Despite advances in statistical
methods, many researchers choose to simply exclude cases with any
missing values from the analysis (complete case analysis).
Multiple Imputation (MI) and Structural Equation Modelling (SEM) are
two sophisticated statistical techniques that may provide unbiased
corrections in compensating for missing data. The aim of this re-
search was to compare the performance of MI and SEM in compen-
sating for missing data in LCRCTs using computer-simulated datasets.
The performance of these methods was also compared to a common
method used to analyse longitudinal data, mixed linear modelling
(MLM).
Methods: Simulated datasets were generated to imitate data from a
real LCRCT. Data from the outcome measures were deleted at 5%,
10%, and 20% and then analysed using the three aforementioned
methods, in addition to complete case analysis (CCA). Missingness
was introduced by three mechanisms: missing completely at random
(MCAR); missing dependent on covariate x (MAR); and missing
dependent on outcome value (MNAR).
Results: Regardless of missingness mechanism, MI, SEM, and MLM
provided similar, unbiased results. SEM and MLM produced the least
biased results, though the SEM generated the smallest standard er-
rors, therefore recovering more of the lost sample size. CCA produces
the largest standard errors and most biased results.
Conclusions: From the results of these simulations, MLM and SEM are
the preferred methods to compensate for missing data in LCRCTs. These
two techniques are able to recover most of the lost sample size, and
therefore researchers are less likely to miss important intervention effects.
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Introduction: In early phase often we have single arm trials with
small patient population to generate evidence for treatment effect. A
common approach in lack of randomized control arm is to compare
outcome from treatment arm with potentially similar historical con-
trol arm adjusting for baseline covariates. Although we can minimize
bias coming from the list of covariates at hand we may have un-
wanted factors which can potentially bias the treatment effect.
Methods: We will look into a case study from a Phase 2 trial. Treat-
ment effect adjusting for baseline covariates using propensity scores
and using adjusted Cox regression model will be demonstrated. Sub-
sequent analysis with other factors in the model will be provided.
Results; Adjusted covariate analysis suggests significant treatment ef-
fect and potential planning for Phase 3 trial. However, subsequent
analysis including other covariate in the model has raised questions
about the magnitude of treatment benefit.
Discussion: Exploratory data analysis with statistically sound method-
ology can generate evidence of treatment effect from single arm tri-
als. However, safeguarding against potential confounders is an issue.
At the end we have to make decision based on risk benefit ratio. But
questions should be raised and explored thoroughly to kill a drug
before a fully planned Phase 3 trial is initiated.
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Introduction: RNA expression data are very common in clinical re-
search. In cancer, tissue samples, e.g. bone marrow aspirates, are usu-
ally a mixture of healthy and cancerous cells. The proportion of both
types of cells varies across individuals. Downstream analyses are
therefore affected by this source of error contributing to a reduction
in power and increase in bias of parameter estimation. A simple
tumor content correction is proposed to render RNA values more
highly correlated with true levels of gene expression in cancer.
Methods: Assume the following simple admixture model:

E ¼ pE cþ 1−pð Þ E n

,where E is the total RNA level for a given gene, e.g. log2(TPM*), Ec is
the expression among cancer cells, and En is the expression among
normal cells, and p is purity or cancer content in a 0-1 scale. A re-
arrangement of the equation above leads to:

E ¼ E nþ E c−E nð Þp ¼ aþ bp

, which is equivalent to a simple linear regression with intercept a
(expected expression in normal cells), and slope b (expected differen-
tial expression –DE-); which after adding a model error e (residuals
after regressing E onto p) would render E=a+bp+e. The proposed
correction is:

E c≅aþ bþ e

Results: Simulation work showed that power to detect DE is reduced
when sample purity decreases, but that power remained high after
adjusting for purity differences. The method corrects equally well re-
gardless of the levels of DE. There is some prediction bias that can
reduced by selecting only samples with higher purities.
Discussion: All downstream analyses using RNA data, e.g. DE, gene
signatures, prognostic modelling etc, would experience an increase
in power and reduction in bias after using this correction in admixed
cancer samples.
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Introduction: Most randomized controlled trials (RCTs) and meta-
analyses examine effect modification (also called subgroup effects or


